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Fig. 6. Noise figure versus frequency.

The entire mixer circuit was tested with respect to the conversion
gain, RF/LO isolation, noise figure, and saturation power. The depen-
dencies of the conversion gain and the isolation between the RF and
LO inputs on the frequency are shown in Fig. 5. The measurements
were carried out at a transistor gate voltage of�0.6 V, a value yielding
optimal characteristics at LO power of 5 dBm without using additional
circuit adjustment. As one can see, we have obtained gain in the 5–7-dB
range from 4.5–10 GHz with conversion down to an IF of 0.5 GHz,
which agrees well with the simulation results (7–8 dB). Our experi-
ments also show that the conversion gain is weakly sensitive to varying
the LO power from 3 to 5 dBm. Setting the LO power to 3 dBm leads to
a drop of gain by about 1 dB. The isolation measured between the signal
and LO inputs is from 20 to 30 dB, which is 5–7 dB less than the calcu-
lated values. This is obviously due to the difference in the impedance
of the transistor gates. The noise figure, shown in Fig. 6, is typically
5–7.5 dB and reaches 9 dB in the upper end of the band; it closely fol-
lows the behavior of the conversion gain. The values achieved for the
noise figure are comparable with those typical for diode mixers in a
wide-band mode of operation in the frequency range considered. The
1-dB compression point at the output was found to be 0 dBm.

IV. CONCLUSION

In this paper, we have developed and investigated a novel type of
balanced active HEMT mixer in a wide-band mode of operation. The
mixer is characterized by good isolation between the RF and LO ports
without the use of filtering elements, conversion gain, and noise figure
comparable to that of Schottky diode mixers. Input and output matching
circuits are designed in order to obtain optimal conversion gain and
noise figure. The conversion gain and noise figure values are typically
in the 5–7- and 5–7.5-dB ranges, respectively, within the 4.5–10-GHz
frequency band. The microwave part of the mixer is easy to implement
which, together with the overall characteristics of the device, makes it
suitable for many applications in the centimeter and millimeter ranges.
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Circular Cylindrical Waveguide Filled with Uniaxial
Anisotropic Media—Electromagnetic Fields

and Dyadic Green’s Functions

Le-Wei Li, Shenghong Liu, Mook-Seng Leong, and Tat-Soon Yeo

Abstract—Electromagnetic fields in a circular cylindrical conducting
waveguide filled with uniaxial anisotropic media are formulated in this
paper by using Fourier transformations. These fields are obtained as a
superposition of the TE (or ordinary) and TM (or extraordinary) modes
satisfying, respectively, different characteristic equations. Lastly, the
dyadic Green’s function is derived using the Ohm–Rayleigh method and
represented by vector wave functions expansion.

I. INTRODUCTION

Over the past several decades, considerable attention has been paid
to the interaction between electromagnetic waves and anisotropic mate-
rials [1]–[3]. As is well known, an anisotropic medium is characterized
by its permittivity tensor��� and permeability tensor��� [1], of which the
form depends on the kind of anisotropy.

In analysis of anisotropic media, a couple of methods have been
widely applied [2]–[9]. The Fourier transform relates the physical
quantities in the spatial and spectral domains [2]–[6]. As an assistant,
the method of angular spectrum expansion provides a way of coor-
dinates transformation [4], [6]. The TE/TM decomposition method
was used to solve electromagnetic problems involving a certain class
of boundaries and media that basically separate TE- and TM-mode
fields [7]–[9]. The dyadic Green’s function (DGF) technique [10] is
a powerful analytic method for solving boundary-value problems. Its
applications in anisotropic media have already been well explored
[11], [12].

In this paper, attention is paid to the analysis of the electromagnetic
fields in circular cylindrical conducting waveguides filled with electri-
cally uniaxial anisotropic media and the DGF. In obtaining the DGF,
the main tasks are to find the vector wave eigenfunctions by which
the electromagnetic fields can be expanded completely and then to de-
termine the coefficients of eigenfunctions expansion. The conventional
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Fig. 1. Geometry of a cylindrical waveguide.

technique given in [10] cannot be directly applied and certain extension
and generalization of the orthogonality relations have to be considered
in the formulation. The results in this paper are reducible to that for the
isotropic case, which has been obtained by Tai [10].

II. BASIC FORMULATION OF THE PROBLEM

The characteristic feature of the uniaxial media is the existence of a
distinguished axis. If one of the coordinate axes is chosen to be parallel
to this distinguished direction, it turns out that the parameter tensor is
diagonal, but the element referring to the distinguished axis is different
from the remaining two diagonal ones.

Consider a cylindrical waveguide (Fig. 1) of which coordinate axes
systems are represented by(x; y; z) and(�; �; z). zzz is the direction
of propagation.

The waveguide is filled with homogeneous electrically uniaxial
anisotropic medium that can be characterized by the following set of
constitutive relations:

DDD = �0���r �EEE BBB = �0HHH (1)

where�0 and�0 are the free-space permittivity and permeability con-
stants, respectively. The optics axis of the uniaxial media is assumed
to be oriented along thezzz-axis, and the other two principal axes are
oriented along the two remaining coordinate axes, i.e.,

���r =

�t 0 0

0 �t 0

0 0 �z

: (2)

From the Maxwell’s equations,

rrr�EEE = i!�0HHH rrr�HHH = �i!�0���r �EEE + JJJ (3)

we have

rrr�rrr�EEE � k20���r �EEE = i!�0 � JJJ (4)

wherek0 = !
p
�0�0, which is the free-space wavenumber. The har-

monice�i!t time dependence is assumed.

III. FIELDS IN SOURCE-FREE REGION

In the region outside the source, (4) reduces to

rrr�rrr�EEE � k20���r �EEE = 0: (5)

The characteristic waves corresponding to (5) can be examined in the
spectral domain using the Fourier transform

EEE(rrr) =
+1

�1

EEE(kkk)eikkk�rrr dkkk (6)

wherekkk = kxx̂xx + kyŷyy + kzzzz. Substituting (6) into (5) leads

+1

�1

k2III � kkkkkk � k20���r �EEE(kkk)eikkk�rrr dkkk = 0 (7)

whereIII = x̂xxx̂xx+ ŷyyŷyy+zzzzzz is the unit dyadic. For nontrivial solutions of
(7), it is required that the determinant of matrix(k2III � kkkkkk� k20���r) be
equal to zero. This yields the characteristic equation

�tk
4
� + (�t + �z) k2z � k02�t k2� + �z k2z � k20�t

2

= 0 (8)

with k2� = k2x + k2y and, consequently, the eigenvalues

k2�1 = k20�t � k2z k2�2 = k20�z � k2z
�z
�t
: (9)

It can be seen thatk�1 is independent upon�z , whilek�2 is a function of
�z , which lead to the ordinary and extraordinary waves [2], respectively.
The corresponding eigenvectors are given by

E1z = 0

E1x cos(�k) +E1y sin(�k) = 0

EEE1(�k; kz) = E1xx̂xx+ E1yŷyy (10a)

for k�1, and

E2x = A(kz) cos(�k)E2z

E2y = A(kz) sin(�k)E2z

EEE2(�k; kz) = E2xx̂xx+ E2yŷyy + E2zzzz (10b)

for k�2, where�k = tan�1(ky=kx) and

A(kz) =
�zkz

�t �z(k20 � k2z=�t)
: (10c)

Obviously,EEE1 is in the TE mode, which can be expressed using the
vector wave functionMMM with zzz as the piloting vector [10], e.g., in cylin-
drical coordinates

MMM1(n; kz) = in
Jn(k�1�)

�
�̂��� @Jn(k�1�)

@�
�̂�� ei(n�+k z): (11)

To have a clearer view ofEEE2, we can express it in a cylindrical co-
ordinate system as follows:

EEE2(�k; kz)= A(kz) cos(�� �k)�̂��� A(kz) sin(�� �k)�̂��+ zzz

�E2z(�k; kz): (12)

Substituting (12) into (6), we have

EEE2(rrr) =
2�

0

d�k
+1

�1

dkze
ik zeik � cos(��� )EEE2(�k; kz):

(13)

As shown in [4], we can assume an angular expansion for the
E2z(�k; kz) component

E2z(�k; kz) =

1

n=�1

q2(n; kz)e
in� : (14)

Substituting (12), (14), and the well-known identity

eik cos(��� ) =

1

n=�1

inJn(k�2�)e
in(��� ) (15)
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into (13), after some straightforward algebraic manipulations by prop-
erly grouping the terms involved in the integrations, we end up with [4]

EEE2(rrr) =
2�

k2

+1

�1

dkz

1

n=�1

inq2(n; kz)

� 1�
kz
k�2

A(kz) NNN2(n; kz)

�
i

k2
(kz � k�2A(kz))LLL2(n; kz) : (16)

Vector wave functionsNNN andLLL, with zzz as the piloting vector as well,
are given as

NNN2(n; kz) =
1

k2
ikz

@Jn(k�2�)

@�
�̂��� nkz

Jn(k�2�)

�
�̂��

+k2�2Jn(k�2�)zzz ei(n�+k z) (17a)

LLL2(n; kz) =
@Jn(k�2�)

@�
�̂�� + in

Jn(k�2�)

�
�̂��

+ikzJn(k�2�)zzz ei(n�+k z) (17b)

wherek22 = k2�2+k2z , andn can take both positive and negative integer
values for a particularkz .

From (3), we have

H2z =
1

i!�0

1

�

@[�EEE2(rrr) � �̂��]

@�
�

1

�

@[EEE2(rrr) � �̂��]

@�
= 0 (18)

which meansEEE2 is in the TM mode. This shows that fields in a cylin-
drical waveguide with the configuration shown in Fig. 1 can be decom-
posed into TE and TM fields. To match the boundary conditions,k�2
must take� = pnm=a, wherepnm are the roots ofJn(x) = 0, andk�1
must take� = qnm=a, whereqnm are the roots ofdJn(x)=dx = 0.

In the following sections, the notations�, �, andMMM� , NNN�, LLL� will
be adopted instead ofk�1, k�2 andMMM1,NNN2,LLL2, respectively.

IV. FORMULATION OF DGF

Equation (4) can be written in dyadic form as

rrr�rrr�GGGEJ rrr; rrr0 � k20���r �GGGEJ rrr; rrr0 = III � rrr � rrr0 : (19)

Following the preceding section, the DGFGGGEJ andIII �(rrr�rrr0) can also
be expanded usingMMM�(n; kz),NNN�(n; kz), andLLL�(n; kz) as follows:

III � rrr � rrr0

=
+1

�1

dkz
n;m

MMM�(n; kz)PPP �(n; kz)+NNN�(n; kz) QQQ�(n; kz)

+LLL�(n; kz)VVV �(n; kz) (20)

GGGEJ rrr; rrr0

=
+1

�1

dkz
n;m

MMM�(n; kz)aaa�(n; kz)+NNN�(n; kz) bbb�(n; kz)

+LLL�(n; kz)ccc�(n; kz) : (21)

Following the Ohm–Rayleigh procedure [10], the expansion coeffi-
cients in (20) and (20) can be determined. The resultant expressions
are given by

PPP �(n; kz) =
1

4�2�2I�
MMM 0

�(�n; �kz) (22a)

QQQ�(n; kz) =
1

4�2�2I�
NNN 0

�(�n; �kz) (22b)

VVV �(n; kz) =
1

4�2k2�I�
LLL0�(�n; �kz) (22c)

and

aaa�(n; kz) =
1

4�2�2I�

1

k2� � k2�0
MMM�(�n; �kz) (23a)

bbb�(n; kz) =
1

4�2�2I�

1

�zk2� (k
2
� � k2�0)

� �NNNNN�(�n; �kz) + �NLLLL�(�n; �kz)

(23b)

ccc�(n; kz) =
1

4�2�2I�

1

�zk2� (k
2
� � k2�0)

� �LNNNN�(�n; �kz) + �LLLLL�(�n; �kz)

(23c)

where

I� =
a

0

J2n(��)�d� =
1

2
a2 1�

n2

�2a2
J2n(�a)

(24a)

I� =
a

0

J2n(��)�d� =
1

2
a2J2n�1(�a) (24b)

k2� =�2 + k2z

k2�0 = k20�t (24c)

k2�0 = k20�t + 1�
�t
�z

�2 (24d)

�NN = �t�
2 + �zk

2
z

�NL =(ikz)=k��
2(�t � �z) (24e)

�LN =�(ikz)=k��
2(�t � �z) (24f)

�LL =�(�2)(k20k
2
�) k4� � k20 �tk

2
z + �z�

2 : (24g)

In this way, the DGF for cylindrical waveguides filled with uniaxial
anisotropic medium is explicitly represented by eigenfunction expan-
sions in terms of the cylindrical vector wave functions. In order to apply
the residue theorem to (20), we must first extract the term in (20), which
does not satisfy the Jordan lemma, as pointed out in [10]. To do so, we
write

NNN�(n; kz) =NNN�t(n; kz) +NNN�z(n; kz) (25a)

LLL�(n; kz) =LLL�t(n; kz) +LLL�z(n; kz)

=�
ik�
kz

NNN�t(n; kz) +
ikzk�
�2

NNN�z(n; kz) (25b)
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and, thus, areNNN 0 andLLL0. The subscriptt and z denote their trans-
verse vector components and theirz-vector components, respectively.
In terms of these functions, (20) can be rewritten in the form

GGGEJ (rrr; rrr
0)

=
+1

�1

dkz
n;m

1

4�2�2I�

1

k2��k
2
�0

�MMM�(n; kz)MMM
0

�(�n; �kz)

+
1

4�2�2I�

k2�
k20�z (k

2
� � k2�0)

�
k20�z � �2

k2z
NNN�t(n; kz)NNN

0

�t(�n; �kz)

+NNN�t(n; kz)NNN
0

�z(�n; kz)

+NNN�z(n; kz)NNN
0

�t(�n; �kz) +
k20�t � k2z

�2

� NNN�z(n; kz)NNN
0

�z(�n; kz) : (26)

The singular term in (26) is contained in the component
NNN�z(n; kz)NNN

0

�z(�n; �kz) [10]. From (20), we note that

zzzzzz �(rrr � rrr
0) =

1

�1

dkz
n;m

1

4�2�2I�

k2�
�2

�NNN�z(n; kz)NNN
0

�z(�n; �kz): (27)

Thus, (26) can be split into

GGGEJ (rrr; rrr
0)

= �
1

k20�z
ẑzzẑzz �(rrr � rrr

0)

+
+1

�1

dkz
n;m

MMM�(n; kz)

4�2�2I�

MMM 0

�(�n; �kz)

k2� � k2�0

+
1

4�2�2I�

k2�
k20�z (k

2
� � k2�0)

�
k20�z � �2

k2z
NNN�t(n; kz)NNN

0

�t(�n; �kz)

+NNN�t(n; kz)NNN
0

�z(�n; �kz)

+NNN�z(n; kz)NNN
0

�t(�n; �kz)

+
�t

�z
NNN�z(n; kz)NNN

0

�z(�n; �kz) :

(28)

The second integral in (28) can be evaluated using the residue the-
orem in thekz-plane. The final result is given after some mathematical
manipulations, forz z0, by

GGGEJ (rrr; rrr
0)

= �
1

k20�z
zzzzzz �(rrr � rrr

0)

+
i

4�
n;m

1

�2kz�I�
MMM�(n; �kz�)MMM

0

� (�n; �kz�)

+
k2�0

k20�t�
2kz�I�

NNN�t(n; �kz�)

+
�t

�z
NNN�z(n; �kz�)

NNN
0

�t(�n; �kz�) +
�t

�z
NNN
0

�z (�n; �kz�)

(29)

wherez andz0 are the positions of the observation and source points,
respectively, measured along thezzz-direction, and

k
2

z� = k
2

�0 � �
2

k
2

z� = k
2

�0 � �
2
: (30)

It can be observed that (29) is reducible to the isotropic case. By letting
�t = �z = �, we have exactly the same form as that obtained by Tai
[10].

V. CONCLUSION

In this paper, electromagnetic fields in a circular cylindrical con-
ducting waveguide filled with uniaxial anisotropic media have been
analyzed. With the optics axis of the uniaxial media oriented along
thezzz-axis of the waveguide, the electromagnetic fields can be decom-
posed into TE and TM modes with different propagation wavenumbers.
By matching the boundary conditions, it has been found that the ordi-
nary wave takes the form of TE modes, while the extraordinary wave
takes the form of TM modes. The electric-type DGF due to the electric
source has been derived using the vector wave eigenfunctions expan-
sion. The Ohm–Rayleigh method has been applied in the formulation.
The singular term has been properly extracted. As their applications,
these DGFs can be used to examine both the electric and magnetic
fields radiated by an arbitrary current source inside the waveguides.
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