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Fig. 6. Noise figure versus frequency.

The entire mixer circuit was tested with respect to the conversion _. L . . . L
gain, RF/LO isolation, noise figure, and saturation power. The depen- Clrcula_r Cylln(_jrlcal WaveQU|de Filled W!th l__JnlaX|aI
dencies of the conversion gain and the isolation between the RF and  Anisotropic Media—Electromagnetic Fields
LO inputs on the frequency are shown in Fig. 5. The measurements and Dyadic Green’s Functions
were carried out at a transistor gate voltage-6£6 V, a value yielding o
optimal characteristics at LO power of 5 dBm without using additional Le-Wei Li,
circuit adjustment. As one can see, we have obtained gain in the 5-7-dB
ran_ge from 4.5-10 G_HZ W'th_conve_‘rS'on down to an IF of 0.5 GHZ_’ Abstract—Electromagnetic fields in a circular cylindrical conducting
which agrees well with the simulation results (7-8 dB). Our expefjyaveguide filled with uniaxial anisotropic media are formulated in this
ments also show that the conversion gain is weakly sensitive to varyipaper by using Fourier transformations. These fields are obtained as a
the LO power from 3 to 5 dBm. Setting the LO power to 3 dBm leads @!Perposition of the TE (or ordinary) and TM (or extraordinary) modes
a drop of gain by about 1 dB. The isolation measured between the sigifglSYing. respectively, different characteristic equations. Lastly,  the

. . L dyadic Green’s function is derived using the Ohm-Rayleigh method and
and LO inputs is from 20 to 30 dB, which is 5-7 dB less than the calClspresented by vector wave functions expansion.
lated values. This is obviously due to the difference in the impedance
of the transistor gates. The noise figure, shown in Fig. 6, is typically
5-7.5 dB and reaches 9 dB in the upper end of the band; it closely fol-
lows the behavior of the conversion gain. The values achieved for theOver the past several decades, considerable attention has been paid
noise figure are comparable with those typical for diode mixers intathe interaction between electromagnetic waves and anisotropic mate-
wide-band mode of operation in the frequency range considered. Tiads [1]-[3]. As is well known, an anisotropic medium is characterized
1-dB compression point at the output was found to be 0 dBm. by its permittivity tensog and permeability tensgt [1], of which the
form depends on the kind of anisotropy.
In analysis of anisotropic media, a couple of methods have been
IV. CONCLUSION widely applied [2]-[9]. The Fourier transform relates the physical
guantities in the spatial and spectral domains [2]-[6]. As an assistant,
. R . ; tfe method of angular spectrum expansion provides a way of coor-
ba_llanged active H.EMT mixerin a Wl(_:ie-band mode of operation. T inates transformation [4], [6]. The TE/TM decomposition method
MIXEr1S charactenz_ed _by good isolation betvyeen the RF and_ LO POi3s used to solve electromagnetic problems involving a certain class
without the use of filtering eleme_nts, conversion gain, and noise f'g%? boundaries and media that basically separate TE- and TM-mode
comparable to that of Schottky diode mixers. Input and outputmatchlﬁgldS [7]-[9]. The dyadic Green's function (DGF) technique [10] is

cirpuits_ are designed in qrder t.o obtain gptir_nal conversion gain_ % owerful analytic method for solving boundary-value problems. Its
noise figure. The conversion gain and noise figure values are typic plications in anisotropic media have already been well explored
in the 5-7- and 5-7.5-dB ranges, respectively, within the 4.5-10-G 4 1 [12]

fr(;quhency b%nd. Thhe Lnlcrowa\f [.:]al"[ of thg r.nlxerflshea:jsy t.o |mplean '?‘m this paper, attention is paid to the analysis of the electromagnetic
which, together with the overall characteristics of the device, makegltq i, circylar cylindrical conducting waveguides filled with electri-

suitable for many applications in the centimeter and millimeter rang%%”y uniaxial anisotropic media and the DGF. In obtaining the DGF,

the main tasks are to find the vector wave eigenfunctions by which
the electromagnetic fields can be expanded completely and then to de-
termine the coefficients of eigenfunctions expansion. The conventional
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|. INTRODUCTION

In this paper, we have developed and investigated a novel type
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X perfectly conducting wall wherek = k,z + k,§ + k. 2. Substituting (6) into (5) leads

- oo
z 2F 11 122 \. L ik g
) / / /_ ~ (FT-kk—kie.) - By dk=0 (1)

wherel = i + 43 + 22 is the unit dyadic. For ngntrivial solutions of
(7), itis required that the determinant of matfi‘T — kk — k3¢, ) be
equal to zero. This yields the characteristic equation

a uniaxial anisotropic medium 4 9 S S S 5 \2

cthp 4 (e €) (2 = k0% Jk) + . (K2 = Kier) =0 (®)
Fig. 1. Geometry of a cylindrical waveguide. )
with k2 = k2 + k; and, consequently, the eigenvalues

technique given in [10] cannot be directly applied and certain extension B2 = kle — k2 K2y = ke — K2 € )
and generalization of the orthogonality relations have to be considered ! s T et
in the formulation. The results in this paper are reducible to that for thg. 4 be seen that,,

! - ) ! : is independent upon , while %, is a function of
isotropic case, which has been obtained by Tai [10].

e, which lead to the ordinary and extraordinary waves [2], respectively.

The corresponding eigenvectors are given by
Il. BASIC FORMULATION OF THE PROBLEM

The characteristic feature of the uniaxial media is the existence of a Ei. =0
distinguished axis. If one of the coordinate axes is chosen to be parallel E\, cos(¢r) + Erysin(ég) =0
to this distinguished direction, it turns out that the parameter tensor is
diagonal, but the element referring to the distinguished axis is different Ei(¢r.k:) = Ero® + Evyg (10a)

from the remaining two diagonal ones.

Consider a cylindrical waveguide (Fig. 1) of which coordinate axJ
systems are represented @y y, z) and(p, ¢, z). Z is the direction
of propagation.

The waveguide is filled with homogeneous electrically uniaxial Esy = A(k.)sin(¢g)Es.
anisotropic medium that can be characterized by the following set of
constitutive relations:

Qr ki, and

By, = A(k.) cos(¢r) Es.

E2(ék7 k:) = FEy.x+ E?}/g + E..Z (10b)
. PR =1/, N
D=c¢E -E B=uH 1) for k2, where¢,, = tan™" (k,/k..) and

ek

wherees andpo are the free-space permittivity and permeability con- Ak:) = (10c)

stants, respectively. The optics axis of the uniaxial media is assumed

to be oriented along the-axis, and the other two principal axes areObviously, £, is in the TE mode, which can be expressed using the

oriented along the two remaining coordinate axes, i.e., vector wave functiod? with z as the piloting vector [10], e.g., in cylin-
drical coordinates

€t

e 0 0

e—lo o ol @ M) = [ian(]:)plﬂ)f) _ E)Jn((j’;mp)(}} cinéthaz) (q1)

To have a clearer view dE-, we can express it in a cylindrical co-
ordinate system as follows:

From the Maxwell’s equations,
VX E=iwvpH VxH=—ivee& - -E+J 3 Es (i, k. )= [‘4(1;,;) cos(é — or)p — A(k:)sin(¢p — @L:)‘Aﬁ +2]
we have By (¢n, k). (12)
VXxVxE—kie E=iouy-J (4) Substituting (12) into (6), we have

27 i oS} . .
whereko = w. /€0, Which is the free-space wavenumber. The har- Ex>(r) = / dqbk/ dk.e*=7etRoze (0= B (6 k).
0 —oc

—iwt

monice time dependence is assumed.
(13)
IIl. FIELDS IN SOURCEFREE REGION As shown in [4], we can assume an angular expansion for the
In the region outside the source, (4) reduces to E>:(¢r, k=) component
VxVxE-Ikyé E=0. (5) Boe(dp. k)= > qan.ko)e™ . (14)
The characteristic waves corresponding to (5) can be examined inthe o ) ]
spectral domain using the Fourier transform Substituting (12), (14), and the well-known identity

oo

[ ] i cos(p—adyp) n . in(b—d)
E(T) = /// E<k)P7kr(ik ©6) PRLTS (p—ok) _ Z 1 J"(kPQP)e (¢6—¢k) (15)

n=—oo
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into (13), after some straightforward algebraic manipulations by propellowing the Ohm—Rayleigh procedure [10], the expansion coeffi-
erly grouping the terms involved in the integrations, we end up with [€jents in (20) and (20) can be determined. The resultant expressions

are given by
Qﬂ— ‘+OO > 72
Ey(r) = P dk. Z i"q2(n, k) : 1 / :
2 e n=—oo Py(n, k.)=——— M, (—n, —k. (22a)
! dr2y21, "
k. . 1 ;
. [(1 = 14(1»:)) Nay(n, k.) Q\(n, k) = IO Ny(=n, —k.) (22b)
. 1 ,
i k) =——-—L\(—n, —k. 22
_AL (ks — kpgA(k,-,/))Lz(n,,kz)} ) (16) Via(n, k) 12120, \(=n, ) (22¢)
)
. A - and
Vector wave functionsV and L, with Z as the piloting vector as well,
are given as , 1 1
a,(n, k.) = T 1T i M, (-n, —k.) (23a)
1 [ 0J.(kyap) Tu(kpap) ATy K = K
No(n, k.) = - {ikz%ﬂﬂ;, — ok, 2P g ) )
2 P P ba(n, k) = - 5 573 3
4m2 N2y e k3 (kS — k3,)
+ki2<jn(kp2p)/z\:| pilndth:z) (17a)
. |:/3NNN/\(_7L, —k.)+ BnrLa(—n, _kz):|
LQ(TL, L“z) = {Wﬁ + l/LM$ (23b)
P P
1 1
. ealn, k) = - NIRRT
ik T (kpe p)g} Jilno+k ) (17b) 172 02], e k2 (k2 — k2,)

. . . - o . |:/3LNN,\(—/L. —k.)+ BrrLa(—n, —k):|

wherels = k2, + k2, andn can take both positive and negative integer

values for a particulak. . (23c)
From (3), we have

. where
Hy= L {1 oBa(r) 4] 1 OIE:). 4 } —0 s . 1 :
w ) ¢ n
o P ’ ’ ‘ L, = / Ta(np)pdp = 502 <1 - ,Izuz) Ji(na)
o ‘
which meangF: is in the TM mode. This shows that fields in a cylin- (24a)
drical waveguide with the configuration shown in Fig. 1 can be decom- a 1
posed into TE and TM fields. To match the boundary conditiéns, I = / J2(Ap)pdp = 5 a’J2_1(\a) (24b)
must take; = p,.m /a, wherep,,.,, are the roots of , (x) = 0, andk v
must take\ = gnm/a, whereg,, are the roots oflJ,,(z)/dx = 0. =\ 4 &2
In the following sections, the notations A, andM,,, N, L, will K2, = ke, (24¢)
be adopted instead &f,1, k,. andM, N2, L», respectively. " 0
Ko = ke + <1 - 3) A2 (24d)
IV. FORMULATION OF DGF €2
Equation (4) can be written in dyadic form as By =X + e k?
~ N - Bne = (i) Fa N (er — e 24
VXVXGEJ(T,'I")—kéET-GEJ(r,r'):Iﬁ(r—'r’). (19) One = (k) [kaX (e =€) (24€)
Brn =—(ik)/kar* (e — €2) (24%)
Following the preceding section, the D& ; andl é(r—r') can also / T )
be expanded usindf,, (n, k.), Na(n, k.),andLy(n, k.) as follows: Bre ==(A")(koky) {kx — ko (ﬂkz +e:A )} (249)
Ts(r—r') In this way, the DGF for cylindrical waveguides filled with uniaxial
+50 anisotropic medium is explicitly represented by eigenfunction expan-
= / dk. Y [M77("= k2)Py(n, k.)+Nx(n, k.) Q\(n, k=) sjons interms of the cylindrical vector wave functions. In order to apply
- n,m the residue theorem to (20), we must first extract the termin (20), which
HLa(n, k)W (n, k:)] (20) \c/ivcr)ic: not satisfy the Jordan lemma, as pointed out in [10]. To do so, we

Na(n, k2) = Na(n, k) + Nao(n, k-) (25a)

+oo
= dk. M, (n, k2)a,(n, k2)+Nax(n, k.) ba(n, k. ;
/—oo ) Z [ (1, ke)ay (n, )+ Na(n, ke) ba(n, k) Ly(n, k) =Lx(n, k.) + Lx-(n, k.)

ik 1k. k)
HL(n, k. )ex(n, kz)]. (1) =~ Nai(n, ko) + =55 Na(n. k) (25b)

vz
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and, thus, areN’ and L’. The subscript and z denote their trans- +€—LNAZ('n7 ikm)}
verse vector components and theivector components, respectively. €:

In terms of these functions, (20) can be rewritten in the form / -
Ne(=n, Fhaa) + F—NA; (—n, :F]"z)\):| }

Gpi(r,r") (29)

4o
1 /
= dr. . XM,(n, k) M (—n, —k.)
/_ Z {472 n?l, ki—k2, " " wherez and:' are the positions of the observation and source points,

) respectively, measured along thlirection, and
I, Bes (B2 — K2y

K2y =k — 0" KD =k — A% (30)

2. 2
X {MN}J(’IL, kz)N'/\l(—n, —k.)
k2 It can be observed that (29) is reducible to the isotropic case. By letting

+ Nai(n, k)N (=n, k) e, = €. = ¢, we have exactly the same form as that obtained by Tai
S 2 .o [10].

N, ke N (=, =) OO

X Ny.(n, k.)N\.(—n, kz)} } (26) V. CONCLUSION

In this paper, electromagnetic fields in a circular cylindrical con-
The singular term in (26) is contained in the componerducting waveguide filled with uniaxial anisotropic media have been

Ny.(n, k.)N,(—n, —k.) [10]. From (20), we note that analyzed. With the optics axis of the uniaxial media oriented along
thez-axis of the waveguide, the electromagnetic fields can be decom-

o0 1 12 posed into TE and TM modes with different propagation wavenumbers.

ZZé(r—7') = / dk Z FPESEIN /\—; By matching the boundary conditions, it has been found that the ordi-

nary wave takes the form of TE modes, while the extraordinary wave
XN x-(n, k:)N\.(=n, —k.). (27) takes the form of TM modes. The electric-type DGF due to the electric
source has been derived using the vector wave eigenfunctions expan-
sion. The Ohm-Rayleigh method has been applied in the formulation.
The singular term has been properly extracted. As their applications,
these DGFs can be used to examine both the electric and magnetic

Thus, (26) can be split into

Gri(r, ") fields radiated by an arbitrary current source inside the waveguides.
1 ... /
—z2z6(r—7r
k2e. ( )
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